Neural stem cell engineering : directed differentiation of adult and embryonic stem cells into neurons Matthew

نویسندگان

  • Matthew J. Robertson
  • Phung Gip
  • David V. Schaffer
  • Helen Wills
چکیده

1. Abstract 2. Introduction 3. Adult neural stem cells and neurogenesis 3.1. Hippocampal stem cells 3.2. Subventricular zone (SVZ) and olfactory bulb stem cells 3.3. Progenitors derived from non-neurogenic regions 3.4. Adult neural stem cell engraftment in vivo 3.4.1. Hippocampal derived neural stem cells 3.4.2. SVZ derived neural stem cells 3.4.3. Spinal cord progenitors 3.4.4. Cortical derived progenitors 3.4.5. Substantia nigra (SN) derived neural progenitors 3.5. Inducing neuronal differentiation with microenvironmental signals and genetic manipulation 3.5.1. Retinoic acid 3.5.2. Morphogens and growth factors 3.5.3. Neurotransmitters 3.5.4. Genetic manipulation 4 Adult and embryonic stem cells 5. Embryonic stem cells 5.1. Expanding and culturing embryonic stem cells 5.2. Embryoid body culture 5.3. Inducing neural specification using media supplements and co-culturing with stromal cells 5.3.1. Retinoic acid 5.3.2. Growth factors and morphogens in the induction of neural differentiation 5.3.3. Stromal cell-derived inducing activity (SDIA) 5.4. Neuronal-subtype specification 5.4.1. Dopaminergic specification 5.4.2. Motor neuron specification 5.4.3. Other neuronal subtypes 5.5. Therapeutic potential of embryonic stem cells in animal models 5.5.1. ES cell-derived dopaminergic cells 5.5.2. ES cell-derived motor neurons 5.5.3. ES cell-derived retinal progenitors 6 Conclusion 7. Acknowledgement 8. References

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007